Supabase
Langchain supports using Supabase Postgres database as a vector store, using the pgvector postgres extension. Refer to the Supabase blog post for more information.
Setup
Install the library with
- npm
 - Yarn
 - pnpm
 
npm install -S @supabase/supabase-js
yarn add @supabase/supabase-js
pnpm add @supabase/supabase-js
Create a table and search function in your database
Run this in your database:
-- Enable the pgvector extension to work with embedding vectors
create extension vector;
-- Create a table to store your documents
create table documents (
  id bigserial primary key,
  content text, -- corresponds to Document.pageContent
  metadata jsonb, -- corresponds to Document.metadata
  embedding vector(1536) -- 1536 works for OpenAI embeddings, change if needed
);
-- Create a function to search for documents
create function match_documents (
  query_embedding vector(1536),
  match_count int
) returns table (
  id bigint,
  content text,
  metadata jsonb,
  similarity float
)
language plpgsql
as $$
#variable_conflict use_column
begin
  return query
  select
    id,
    content,
    metadata,
    1 - (documents.embedding <=> query_embedding) as similarity
  from documents
  order by documents.embedding <=> query_embedding
  limit match_count;
end;
$$;
-- Create an index to be used by the search function
create index on documents
  using ivfflat (embedding vector_cosine_ops)
  with (lists = 100);
Usage
import { SupabaseVectorStore } from "langchain/vectorstores/supabase";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { createClient } from "@supabase/supabase-js";
export const run = async () => {
  const client = createClient(
    process.env.SUPABASE_URL || "",
    process.env.SUPABASE_PRIVATE_KEY || ""
  );
  const vectorStore = await SupabaseVectorStore.fromTexts(
    ["Hello world", "Bye bye", "What's this?"],
    [{ id: 2 }, { id: 1 }, { id: 3 }],
    new OpenAIEmbeddings(),
    {
      client,
      tableName: "documents",
      queryName: "match_documents",
    }
  );
  const resultOne = await vectorStore.similaritySearch("Hello world", 1);
  console.log(resultOne);
};